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The Thermodynamic Theory of Electrocapillarity1 

BY DAVID C. GRAHAME AND ROBERT B. WHITNEY 

The Gibbs adsorption theorem (Gibbs' equa
tion 508) is a relationship between the change in 
the interfacial tension between two phases, the 
change in chemical potential of the components of 
the phases, the change in the superficial density of 
entropy in the system and the amounts of the 
various independent components adsorbed at the 
interface.111 When some of the components of the 
system are electrically charged particles, as in an 
electrocapillary system, the Gibbs equation cannot 
be applied directly in its original form for reasons 
which will be pointed out below. In the study of 
electrocapillary phenomena it is desirable to have 
a thermodynamic equation analogous to the Gibbs 
adsorption theorem. The Lippmann equation2 

is a special case of such an equation. 

Many discussions of this problem have focussed 
attention on the "potential-determining" ion, as 
though the causal agent producing the potential 
difference between the phases at equilibrium were 
the ions of the metal in the non-metallic phase 
(often present in amounts so small as to be mean
ingless except in a statistical sense) instead of the 
external apparatus by means of which the potential 
difference is fixed. The difficulties of this line of 
approach led Koenig3 to give up the hope of ex
tending the Gibbs equilibrium treatment and to 
regard the polarized electrode as a system in which 
equilibrium does not subsist between the phases. 
He assumed, instead, that n the interface there 
exists a barrier impermeable to charged particles. 
On this basis Koenig has derived a general equa
tion of electrocapillarity for the ideal polarized 
electrode and has applied it to the deduction of 
equations referring to special experimental condi
tions which may be realized in the laboratory. I t 
is the purpose of this paper to show that the equa
tions developed by Koenig are not peculiar to the 
type of system which he postulates but may be 
derived for a polarized electrode at equilibrium 
with respect to the distribution of its charged 
components and not possessed of a barrier im
permeable to charged particles. It appears to the 

(1) Original manuscript received July 14, 1941. 
(Ia) J. W. Gibbs, "Collected Works," Vol. I, Longmans, Green 

and Co., New York, N. Y., 1S28, pp. 219 et seq. 
(2) G. Lippmann, Pogg. Ann., 149, 547 (1S73); Ann. chim. fhys., 

[51 5, 494 (1875); 12, 265 (1877); see also Gibbs' equation 690. 
(3) F. O. Koenig, J. Phys. Chem., SS, 111, 339 (1934). 

present authors that real systems are best char
acterized in this manner and may be made to 
approach the postulated ideal condition of equilib
rium as closely as the physical perfection of the 
experimental apparatus will permit. In addition, 
we shall show that the equations here developed 
have a wider scope and a slightly different signifi
cance from those of identical form given by Koe
nig. 

Qualitative Considerations.—Consider a sys
tem composed of a metal in contact with an 
electrolytic solution and provided with some ex
ternal means whereby the potential difference be
tween the phases may be altered at will. It need 
not concern us that the absolute magnitude of the 
potential difference must remain unknown. We 
exclude from consideration all cases in which the 
system just postulated is not at equilibrium as re
gards ordinary chemical action or as regards the 
distribution of charged particles between the 
phases. In a system at equilibrium there will be 
no net transfer of charge from one phase to the 
other, and therefore there will be no current flow
ing through the external circuit by which the 
superimposed potential is applied. From a prac
tical standpoint the systems we are considering 
form three classes of electrodes, ideal polarized 
electrodes, ideal non-polarizable electrodes and 
partially polarizable electrodes. We distinguish 
these three classes by the magnitude of the con
tinuous current which flows through the external 
circuit when the potential difference between the 
phases is altered slightly from its value in the 
original (equilibrium) state. In an ideal polarized 
electrode no continuous current flows; in an ideal 
non-polarizable electrode a continuous current 
flows, limited only by the ohmic resistance of the 
system, whereas in a partially polarizable elec
trode a continuous current flows, but of magnitude 
less than that predicted by Ohm's law (if polari
zation e. m. f.'s are ignored). These distinctions 
are practical rather than thermodynamic criteria 
of polarizability, since Ohm's law and the con
cepts associated with that law are not a part of 
thermodynamics. Indeed, the distinction between 
ideal non-polarizable electrodes and partially 
polarizable electrodes appears to have no meaning 
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for thermodynamics, and the concept will not be 
used in the thermodynamic treatment which 
follows. The distinction between ideal polarized 
electrodes and the two types of electrodes just 
mentioned (regarded as a single class) may be 
made on the basis of the amounts of the charged 
components present in the two phases at equilib
rium, as will presently appear. 

When the potential difference across the phases 
of an electrode at equilibrium is altered slightly, 
there is a momentary surge of current through the 
external system as a result of a readjustment of the 
composition of the electrical double layer at the 
interface, but this readjustment takes place very 
quickly and in no way obscures the slow readjust
ment which may be observed as a continuous flow 
of current in a partially polarizable or non-
polarizable electrode. 

Although the two ideal types of electrode cannot 
be attained in practice, it is possible to prepare 
electrodes which approach ideal conditions almost 
as closely as desired. Thus a large reversible elec
trode is practically non-polarizable under favor
able conditions, and a system composed of mer
cury in contact with aqueous potassium chloride is, 
to all intents and purposes, ideally polarized over 
a considerable range of superimposed potentials. 
The same system becomes partially polarizable 
when the potential difference between the phases 
is such that the concentration of mercurous ions 
in the aqueous phase is not negligible at equilib
rium. 

I t will be recognized that at equilibrium the 
concentration of the so-called potential-deter
mining ion in the non-metallic phase varies with 
the applied potential difference between the phases. 
In an ideal polarized electrode this concentration 
is necessarily extremely small in one of the two 
phases, for if it were not so, a change in the po
tential difference between the phases would result 
in a finite current flow during the relatively long 
period of time required for the system to attain a 
new state of equilibrium. Since any ion in the 
system might be regarded as a potential-deter
mining ion, it follows that in an ideal polarized 
electrode the concentration of every charged 
species must be negligibly small in one of the two 
bulk phases. I t is this circumstance which makes 
it unnecessary to postulate a barrier impermeable 
to charged particles in an ideal polarized electrode. 

From the standpoint of thermodynamics it is 
desirable to define the ideal polarized electrode as 

one in which each charged species is present in 
appreciable amounts in only one of the two bulk 
phases. This definition is equivalent to the prac
tical definition first given. An electrode at equilib
rium and containing one or more charged com
ponents at finite concentrations in both phases 
would be classed as a non-polarized electrode. I t 
should not be inferred from this nomenclature that 
the electrode is necessarily non-polarizable, how
ever. 

On the Application of the Gibbs' Adsorption 
Theorem to Systems in which Charged Sub
stances Are Regarded as Independent Compo-
ents.—The Gibbs' adsorption theorem, in its 
original form, applies to systems in which all com
ponents are regarded as neutral substances. (Any 
actual system may be so regarded, of course, pro
vided the system as a whole remains electrically 
neutral.) I t would appear reasonable to rewrite 
the equation, substituting electrochemical poten
tials for chemical potentials,4 and to assume that 
the rewritten equation would apply to systems in 
which charged components are regarded as inde
pendent components. Such an assumption would 
not be strictly correct, however, as we now pro
ceed to show. 

The physical system treated by Gibbs is chosen 
as an internal part of a larger system of the same 
kind in order to eliminate from the discussion 
phase boundaries other than the one specifically 
under consideration. This is an important char
acteristic of the derivation not easily dispensed 
with if thermodynamic rigor is to be maintained. 
Such a system must remain electrically neutral 
as a result of the fact that any excess charge will 
accumulate on the external surfaces of the con
ducting system.6 In a system constrained to re
main electroneutral, the principal charged com
ponents6 cannot be added or removed independ
ently of one another. One of these components 
is not an independent component, yet the system 
cannot be regarded as formed from its independent 

(4) For an uncharged component, the electrochemical potential 
may be regarded as identical with the chemical potential. 

(5) It is debatable whether or not one may consider infinitesimal 
deviations from electrical neutrality in the interior of a conducting 
system. We avoid this question, and at the same time simplify our 
treatment, by restricting the allowable variations to those which can 
be carried out without destroying the electrical neutrality of the 
system as a whole. Since actual systems do remain electroneutral, 
the applicability of our final equations is not thereby impaired. 

(6) By principal charged components we mean those substances 
which must be added to make up the system under consideration. 
Electrolytes which dissociate into two or more ionic species we regard 
as mixtures of these substances. Water is regarded as a single sub
stance. Metals are regarded as mixtures of ions and electrons, each 
of which is a principal component. 
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components only. One of the principal charged 
components may be singled out and called a de
pendent component, yet its presence must be 
taken into account, either explicitly or implicitly, 
in any equation relating to the energy content of 
the system. 

In the derivation of the adsorption theorem in 
its original form the chemical potentials enter as a 
substitution for the quantity dE/dni where E is 
the energy of the system (regarded as a function of 
the entropy and the number of moles of the inde
pendent components) and w,- is the number of 
moles of the component A",. In the particular 
kind of system we are now considering, it is not 
valid to write djE/dw, = ,u,-,7 where £,- is the elec
trochemical potential, because the addition of a 
charged component necessitates the addition or 
removal of another charged component, regarded 
as a dependent component. It is this fact which 
makes it incorrect simply to write /I; for ,u> in the 
Gibbs' adsorption theorem. 

Derivation of the General Equations of Elec-
trocapillarity.—If we choose to regard the elec
trons of the metallic phase as the dependent 
component whose amount varies with the addition 
or removal of charged components in such a way 
that electrical neutrality is always preserved, we 
may write 

dE/dm — Ji1 + Ziji, (1) 

where Z; is the "valence" (including sign) of Xit 

and Jj1 is the electrochemical potential of the elec
trons in the system. 

The derivation of the adsorption theorem can be 
carried through in the usual manner without sub
stituting any new symbol for the quantity dE/dnt. 
Then Gibbs' equation 508 becomes 

d, + S adr= - £ i \ d ( g ) (2) 

In this equation <r is the interfacial tension of the 
interface under consideration, Tj is the excess of 
the component X{, in moles per unit area, over 
that which would be present in the system if the 
density of X{ in each phase remained constant (at 
its value in the internal parts of the bulk phases) 
right up to a mathematical surface drawn parallel 
to, but not necessarily coincident with, the physi
cal interface. The physical interface is assumed 
to be effectively plane, by which it is meant that 
its radius of curvature is very large relative to the 
thickness of the region of discontinuity at the 

'.V) E. A. Guggenheim, "Modern Thermodynamics," Methuen and 
Co., London, 1933, p. 133. 

interface. 5S is the superficial density of entropy 
(entropy per unit area) defined in a manner analo
gous to the Fs . T is the (absolute) temperature. 
The summation is carried out over the c inde
pendent components. If charged substances are 
regarded as independent components, c will be less 
by one than the number of principal components. 

Equation 2 is valid for any two-phase system at 
equilibrium, subject only to the usual limitations 
with regard to gravitational and electric fields, 
strains in solids, etc.la If we agree to adopt the 
conventions appropriate to Eq. 1, we may write 

C C 

do- + S,dT = - 2 > d « - J^TiZidH. (3) 

It may be noted in passing that this equation 
may be obtained somewhat more readily, if not so 
rigorously, by overlooking the requirement of 
electrical neutrality imposed upon the system by 
its physical arrangement. In that case the ad
sorption equation would be written 

e+l 
d<r + S.dr = - £ l \ d « 

where the c + 1 components include the electrons. 
Expanding this equation, and noting that when 

C 

the system is electrically neutral X ^ z , = Te, we 
obtain 

C 

do- + SAT = - ^ r ( d w - VedH. 
C C 

= -̂ STr.-dw - r̂.-ZidM. 

In these equations, as elsewhere, the subscript e 
refers to the electrons. 

We may express electrochemical potentials in 
terms of chemical potentials and electrical poten
tials by the substitution7 

dM = d« + ZiFdipi (4) 

where F is the faraday and d^; is the change in 
the electrical potential of the phase in which the 
chemical potential, /*,-, is reckoned. Equation 4 is 
valid for electrons, as for ions. I t is also valid for 
uncharged substances, since for these latter, s,- = 
0. Substitution of Eq. 4 into Eq. 3 gives 

c c a 
do- + S3dT = - 2 > d w _ ^r iZjdM. - FjyiZi&v" -

(S a 0 
F^riZidpS + F^Tism&p" + F^iZtdp" (5) 

C IS C 

= -jytdw - FY1ViZId(^ - vc) - ^ d M , (6) 

In these equations we have divided the summa
tions containing <p's into two parts according to the 
phase in which the chemical potential of each 
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particular component has been reckoned. The 
symbols a and /3 over the signs of summation 
signify that the summation is to include those in
dependent components whose chemical potentials 
have been reckoned in the metallic and non-
metallic phases, respectively. <pa and <pe are the 
electrical potentials of these phases. It will be 
noted that in a system at equilibrium the electro
chemical potential of every component is the same 
in the two phases, and it will therefore make no 
difference in which phase a component is reckoned. 
But it will usually be more convenient to measure 
the chemical potential in one phase rather than in 
the other, and this consideration will generally 
indicate the phase in which a given component 
may most conveniently be reckoned. Equations 
5 and 6 have been written on the assumption that 
the electrons will be regarded as a component of 
the metallic phase. This is a matter of conven
ience rather than of thermodynamic necessity. 

Equation 6 may be regarded as a general equa
tion of electrocapillarity. I t is applicable to 
polarized and non-polarized electrodes alike. In 
order to apply it more conveniently to ideal polar
ized electrodes we may define a quantity ^ by 
the equation 

0 
* = F^1FiK (7) 

Because of the electrical neutrality of the system 
as a whole we may write 

C 

2>« = r, (8) 
Substitution of Eqs. 7 and 8 into Eq. 6 yields the 
simplest form of the general equation, when this is 
to be used in connection with ideal polarized elec
trodes, as follows 

c + l 
do- + S.dT e /Sd(^ - v) - ] T r i d M < (9) 

Like Eq. 6, this equation applies to any elec
trode at equilibrium. It is restricted only by the 
requirement that the physical interface be essen
tially plane, as denned above. This restriction 
limits the possible variation of if — <pa and of the 
ju's to values such that the pressures within the two 
phases are (nearly) equal. Since this is also the 
requirement that the interfacial tension be measur
able by the usual methods, the equations may be 
applied to any system for which the interfacial 
tension is measurable.8 

(8) Our equations are valid for a system in which the interface is 
not essentially plane if the position of the dividing surface, with 
reference to which the r ' s are reckoned, is sensibly coincident with 
the physical interface. This point is discussed in detail by Gibbs, 
ref. Ia. 

It is particularly to be noted that the position 
of the surface of reference, with respect to which 
5S and the Ts are reckoned, is not specified in the 
foregoing treatment but may be taken as any sur
face parallel to the (essentially plane) interface. 
This makes it possible to set any one of the F s 
equal to zero, whereby the position of the surface 
of reference is fixed. The component for which T 
is set equal to zero may be called the reference 
component. If it is desired to place the surface of 
reference as nearly coincident with the physical 
interface as possible, the reference component 
must be chosen as that component which may 
most reasonably be assumed not to undergo con
centration or dilution at the physical interface. 
From the standpoint of thermodynamics alone, it 
is a matter of indifference which component is 
selected as a reference component except in certain 
very unusual cases discussed by Gibbs, ref. Ia, p. 
234. 

In an ideal polarized electrode the value of «s will 
be independent of the position of the surface of 
reference. This results from the fact that every 
charged component is to be found in only one of 
the bulk phases, and since the interior of each 
phase is electrically neutral, the excess of charge 
is uninfluenced by changes in the assumed volume 
of each such neutral phase. 

For an ideal polarized electrode the quantity 
ts is nearly identical with what is commonly called 
the surface charge density, but it happens that the 
thermodynamically significant quantity is e* and 
not the surface charge density, as that term is 
commonly understood. For example, it is £ 
which is actually measured in experiments which 
purport to measure the surface charge density.9'10 

If physical interfaces are as sharply defined as is 
generally believed, the practical difference between 
these quantities is wholly negligible, but it is im
portant from the standpoint of thermodynamics to 
realize that the quantities are not identical. The 
differential capacity of an ideal polarized electrode 
is identical with the quantity deB/d(<f — <p").10 

Thus it appears that the experimentally observable 
properties of an ideal polarized electrode form a 
self-consistent system independent of any concepts 
relating to the "true" surface charge density. It 
will be noted that the concept of a "true" surface 
charge density is analogous to the concept of a 

(9) A. Frumkin, Z. physik. Chem., 103, 55 (1923); L. St. J. Philpot, 
Phil. Mag., 13, 775 (1932); I. M. Barclay and J. A. V. Butler, 
Trans. Faraday Soc, 36, 128 (1940). 

(10) D. C. Grahame, T H I S JOURNAL, 63, 1207 (1941). 
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"true" degree of dissociation of an electrolyte.11 

At constant temperature and composition, Eq. 9 
reduces to the familiar Lippmann equation 

do- = -rfd(*>0 - <?*) (10) 

When the composition of the phases remains con
stant, d ( ^ — <pa) is an experimentally observ
able quantity. At the potential of the electro-
capillary maximum, / = 0. 

Equation 9 gives rise to a number of other use
ful equations related to the electrocapillary prop
erties of an ideal polarized electrode. These have 
been worked out in detail by Koenig3 from an 
equation substantially identical with our Eq. 9. 
The only change in these further equations which 
our treatment requires is in the manner of inter
preting / and in the location of the surface of 
reference, which latter is arbitrary in our treat
ment. Since the form of the equations is not 
changed by these considerations, we have not 
thought it necessary to repeat the equations here. 
It should be pointed out to prospective users, how
ever, that Koenig has defined his F s and n's in 
terms of equivalents rather than in moles. 

It is found experimentally that the Lippmann 
equation is sometimes obeyed with considerable 
accuracy even when the system under investiga
tion is far removed from a state of equilibrium.10 

This circumstance is doubtless to be attributed 
to the fact that the properties of an interface are 
affected chiefly by the composition of the phases 
in the immediate neighborhood of the interface. 
Since this part of the system readily reaches a 
steady state only slightly different from an equilib
rium state, it is understandable that the observ
able properties should be essentially those of a 
system at equilibrium. 

Application of the General Equation to the 
Non-polarized Electrode.—At constant tempera
ture, the only variation of a non-polarized elec
trode consistent with the condition of equilibrium 
is a simultaneous variation of composition and 
(P^ — <pa. The most important case of a system of 
this kind is the system formed by a pure metal in 
equilibrium with a solution of one of its simple 
salts (a salt which dissociates into two ionic species 
only). If we let the subscripts 0, + and - desig
nate, respectively, quantities related to the sol-

(11) G. N. Lewis and M. Randall, "Thermodynamics," McGraw-
Hill Book Co., Inc., New York, N. Y., 1923, pp. 317-325. 

vent, the cation and the anion of the salt, then 
from Eq. 4, by equating dju+ and d£+ 

z+Fd(<pfi - <f) = - d M + ( H ) 

The superscripts on the chemical and electro
chemical potentials designate the phase in which 
the chemical potential of the component is to be 
reckoned. Substitution of Eq. 11 into Eq. 6 gives 

d<r = -r+dM<L - r_d^£ - r„dM. + T+dul + — T-dul 

(12) 

= - — r_dM - r„dM» (13) 

The symbol n, without subscript, denotes the 
chemical potential of the salt, which is equal to 
(z+M- —2-M+)// where/ is the largest common fac
tor of z+ and — z-. In deriving Eq. 12 the cation 
was arbitrarily regarded as a component of the 
non-metallic phase. The same final result would 
have been obtained if it had been regarded as a 
component of the metallic phase. Equation 13 
can also be derived very readily from the Gibbs 
adsorption theorem in its usual form by regard
ing the metal, the salt and the solvent as the three 
independent components of the system. 

It has not been customary in the past to meas
ure interfacial tensions of non-polarized systems 
under conditions suitable for the application of 
Eq. 13. However, there seems to be no reason 
why such measurements could not be carried out 
with mercury as the metallic phase and aqueous 
mercurous nitrate, for example, as the electrolyte. 
Taking the solvent as the reference component, 
one could readily calculate T- at various concen
trations of electrolyte, and also, by equation 8, 
s+Ft- — IV It does not appear to be possible, 
however, to evaluate T+ and Tt separately. 

Summary 

The thermodynamic equations of electrocapil-
larity have been derived with no assumptions other 
than that of equilibrium between the phases. I t 
is shown that the interpretation of the equations 
so obtained is slightly different from what had 
previously been supposed. A general electro-
capillary equation has been derived for a non
polarized electrode, and it is shown how this may 
be applied to experimentally obtainable data. 
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